Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper considers the change point detection problem under dependent samples. In particular, we provide performance guarantees for the MMD-CUSUM test under exponentially α, β, and fast ϕ-mixing processes, which significantly expands its utility beyond the i.i.d. and Markovian cases used in previous studies. We obtain lower bounds for average-run-length (ARL) and upper bounds for average-detection-delay (ADD) in terms of the threshold parameter. We show that the MMD-CUSUM test enjoys the same level of performance as the i.i.d. case under fast ϕ-mixing processes. The MMD-CUSUM test also achieves strong performance under exponentially α/β-mixing processes, which are significantly more relaxed than existing results. The MMD-CUSUM test statistic adapts to different settings without modifications, rendering it a completely data-driven, dependence-agnostic change point detection scheme. Numerical simulations are provided at the end to evaluate our findings.more » « less
-
Southern Tibet is the most active orogenic region on Earth where the Indian Plate thrusts under Eurasia, pushing the seismic discontinuity between the crust and the mantle to an unusual depth of ~80 km. Numerous earthquakes occur in the lower portion of this thickened continental crust, but the triggering mechanisms remain enigmatic. Here we show that dry granulite rocks, the dominant constituent of the subducted Indian crust, become brittle when deformed under conditions corresponding to the eclogite stability field. Microfractures propagate dynamically, producing acoustic emission, a laboratory analog of earthquakes, leading to macroscopic faults. Failed specimens are characterized by weak reaction bands consisting of nanometric products of the metamorphic reaction. Assisted by brittle intra-granular ruptures, the reaction bands develop into shear bands which self-organize to form macroscopic Riedel-like fault zones. These results provide a viable mechanism for deep seismicity with additional constraints on orogenic processes in Tibet.more » « less
-
Lower-crustal earthquakes in southern Tibet are linked to eclogitization of dry metastable granuliteAbstract Southern Tibet is the most active orogenic region on Earth where the Indian Plate thrusts under Eurasia, pushing the seismic discontinuity between the crust and the mantle to an unusual depth of ~80 km. Numerous earthquakes occur in the lower portion of this thickened continental crust, but the triggering mechanisms remain enigmatic. Here we show that dry granulite rocks, the dominant constituent of the subducted Indian crust, become brittle when deformed under conditions corresponding to the eclogite stability field. Microfractures propagate dynamically, producing acoustic emission, a laboratory analog of earthquakes, leading to macroscopic faults. Failed specimens are characterized by weak reaction bands consisting of nanometric products of the metamorphic reaction. Assisted by brittle intra-granular ruptures, the reaction bands develop into shear bands which self-organize to form macroscopic Riedel-like fault zones. These results provide a viable mechanism for deep seismicity with additional constraints on orogenic processes in Tibet.more » « less
An official website of the United States government
